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Abstract

Purpose: In spite of improvements of average benefit from
adjuvant/neoadjuvant treatments, there are still individual
patients with early breast cancer at high risk of relapse. We
explored the association with outcome of robust gene cluster—
based metagenes linked to proliferation, ER-related genes, and
immune response to identify those high-risk patients.

Experimental Design: A total of 3,847 publicly available gene-
expression profiles were analyzed (untreated, N = 826; tamoxi-
fen-treated, N = 685; chemotherapy-treated, N = 1,150). Genes
poorly performing in formalin-fixed samples were removed. Out-
comes of interest were pathologic-complete response (pCR) and
distant metastasis-free survival (DMFS). In ER"HER2 ", the pro-
liferation and ER-related metagenes were combined to define
three risk groups. In HER2" and ER HER2 ™ risk groups were
defined by tertiles of an immune-related metagene.

Results: The high-proliferation/low-ER group of ER"HER2 ™
breast cancer had significantly higher pCR rate [OR, 5.01 (1.76-

Introduction

Early breast cancer is a molecularly, biologically, and clinically
heterogeneous disease (1-3). The prognosis in patients with early
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17.99), P = 0.005], but poorer outcome [HR = 3.73 (1.63-8.51),
P = 0.0018] than the low-proliferation/high-ER. A similar asso-
ciation with outcome applied to patients with residual disease
(RD) after neoadjuvant chemotherapy (P = 0.01). In ER"HER2 ™
and HER2" breast cancer, immune metagene in the high tertile
was linked to higher pCR [33.7% vs. 11.6% in high and low tertile,
respectively; OR, 3.87 (1.79-8.95); P = 0.0009]. In ER" HER2",
after adjuvant/neoadjuvant chemotherapy, 5-year DMFS was
85.4% for high-tertile immune metagene, and 43.9% for low
tertile. The outcome association was similar in patients with RD
(P=0.0055). In HER2" breast cancer treated with chemotherapy
the association with risk of relapse was not significant.

Conclusions: We developed metagene-based predictors able to
define low and high risk of relapse after adjuvant/neoadjuvant
therapy. High-risk patients so defined should be preferably con-
sidered for trials with investigational agents. Clin Cancer Res; 1-9.
©2015 AACR.

breast cancer has significantly improved over the last two decades
by introducing new adjuvant treatments with an "add-on" strat-
egy (4, 5). For instance, the addition of anthracyclines to early
polychemotherapy regimens improved the chance of cure, which
was further increased by the later addition of taxanes to the
anthracycline-containing regimens (5). However, the drawback
of this strategy is that at each sequential step of treatment
improvement the portion of overtreated patients increases due
to the progressive decrease of the residual risk, whereas for the
same reason similar relative benefits translate into progressively
smaller absolute benefits (6). Therefore, new drug development in
early breast cancer has become challenging. Indeed, to demon-
strate an additional benefit over an overall relative good outcome,
very large clinical trials are needed to provide statistically signif-
icant results, and a small average incremental benefit might
appear nonclinically meaningful or the related treatments may
be deemed cost-ineffective. In this context, there is an urgent need
for the identification of prognostic and predictive biomarkers able
to distinguish patients who will do very well with standard
treatments and could be excluded from trials with investigational
drugs, from patients who will have a significant residual risk
despite standard treatment. These biomarkers would improve
and optimize the design of clinical trials and increase the chance
of a successful development of new drugs in the early setting (7).

A large number of gene expression profiles (GEP) have been
generated during the last decades to discover, develop, and
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Translational Relevance

Individual patients with breast cancer may be at high risk of
relapse in spite of improved average benefit with modern
adjuvant/neoadjuvant treatments. We developed subtype-spe-
cific metagene-based predictors and validated their ability to
define residual risk of recurrence after neoadjuvant/adjuvant
treatments. Our predictors are formalin-fixed, paraffin-
embedded-compliant, prompting a rapid translation into
clinical routine. We identified an immune-related metagene
directly associated with prognosis and benefit from chemo-
therapy in triple-negative breast cancer, with the low tertile
having a dismal outcome. In ERTHER2™ breast cancer,
patients treated with chemo-endocrine therapy having high-
proliferation/low-ER-related tumors had the highest risk of
recurrence despite higher response to chemotherapy. Low-risk
patients do very well with standard treatment. Instead, early
identification of the above high-risk patients may help the
search for individualized new treatments. Clinical trials enroll-
ing only these patients would reduce the overtreatment and
increase the chance of demonstrating a clinical meaningful
benefit, despite requiring a smaller sample size and reducing
costs.

validate prognostic and predictive gene signatures. Some of
these signatures are commercially available to define the
residual risk in ERYHER2 ™ tumors after receiving adjuvant
endocrine treatment (Mammaprint, Oncotype DX, Breast Can-
cer Index, PAM50, EndoPredict; refs. 8-12). None of these
signatures was specifically aimed or assembled to define the
residual risk after standard chemotherapy or chemoendocrine
therapy.

A general bottleneck in the development of new signatures is
the difficulty to reach the level of evidence required for their
clinical implementation by running expensive and long prospec-
tive clinical trials (13, 14). To overcome this limitation, it was
suggested that the retrospective use of samples collected within
prospective clinical trials could more efficiently provide this level I
evidence (15). Formalin-fixed, paraffin-embedded (FFPE) sam-
ples are routinely archived within clinical trials. Although obtain-
ing reliable GEPs from FFPE samples using commercially avail-
able chip (i.e., Affymetrix and Illumina) has been considered
challenging for a long time, we and others have recently shown
that it is feasible (16-18), in particular, by improving and opti-
mizing the processing approach (19). However, predictors devel-
oped using frozen samples would underperform on FFPE-derived
GEPs due to the unpredictable lower performances of some
probesets.

In this study, building on the knowledge acquired during the
last decade on the most relevant prognostic and predictive factors
in breast cancers, we aimed to develop metagene-based risk
predictors (MBRPs) suitable for application on FFPE-derived
GEPs with the objective to predict the risk of relapse in patients
receiving neoadjuvant/adjuvant chemotherapy followed by
endocrine treatment as appropriate. In particular, we were inter-
ested in defining patients at high recurrence risk despite standard
treatment, which could be ideal candidates for trials with inves-
tigational drugs in early breast cancer. Coherently with our
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previous works (20-22), these MBRPs were developed and tested
separately for the three main breast cancer subtypes (ER"HER2 ",
HER2", and ER"HER2).

Materials and Methods

Data sets collection and processing

We collected a total of 25 publicly available breast cancer
data sets (N = 3847) from the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) and ArrayExpress website
(http://www.ebi.ac.uk/arrayexpress/). These data sets con-
tained expression profiles generated from the Affymetrix Gen-
eChip Human Genome U133A or U133 Plus 2.0 chips. Data
sets were grouped according to the clinical information avail-
able and the type of treatment received to generate four distinct
groups: (i) the GENERIC collection (N = 1186), including
samples without meaningful clinical information available;
(ii) the PROGNOSTIC collection (N = 826), including node
negative patients with early breast cancers not treated with any
systemic therapy until relapse; (iii) the TAM (tamoxifen-trea-
ted) collection (N = 685), including breast cancer profiles from
patients receiving 5 years of adjuvant tamoxifen; and (iv) the
CHEMO collection (N = 1150), including patients treated with
either neoadjuvant or adjuvant chemotherapy followed by
endocrine treatment as appropriate (Table 1, Supplementary
Section S1). Only two patients with HER2 " tumor were treated
with adjuvant trastuzumab (CHEMO collection, Petel study, E-
MTAB-365). We also used an additional series of 44 samples for
which GEPs were derived from FFPE tissue (18).

Table 1. Summary of public data sets and number of samples included in the
study

Data set Number of Suitable
Collection Data set ID name samples samples
Generic GSE2109 expO 353 301
GSE3744 Richardson 47 8
GSE5460 Lu 127 127
GSE10780 Chen 185 42
GSE12276 Massague 204 204
GSE12763 Hoeflich 30 30
GSE13787 Marty 23 23
GSE16391 Desmedt 55 55
GSE19615 Li n5 42
GSE20711 Dedeurwaerder 90 88
GSE21653 Sabatier 266 266
Total 1,495 1,186
Prognostic GSE2034 Wang 286 286
GSE2990 Sotiriou 189 84
GSE5327 Minn 58 58
GSE7390 Transbig 198 198
GSET121 Mainz 200 200
Total 931 826
TAM GSE9195 Loi 77 77
GSE6532 Loi2 277 277
GSE12093 Zhang 136 136
GSE17705 Symmans 298 195
Total 788 685
Chemo GSE25055 Hatzis_disc 310 310
GSE25065 Hatzis_val 198 198
E-MTAB-365 Petel 537 243
GSE16446 Desmedt 120 120
GSE41998 Horak 279 279
Total 1,444 1,150
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Raw signals were processed using fRMA normalization and an
alternative Chip Description File (CDF) as previously described
(19). We considered only the probes common between U133A
and U133 Plus 2.0 chips as detailed in Supplementary Section S2.

Definition of molecular subtypes

Three molecular subtypes were defined according to ER and
HER?2 status: ERTHER2~, HER2", and ER "HER2 . Within the
HER2™ subtype, we also assessed outcome predictors in ER™
and ER™ groups. A key step in our strategy was to develop
outcome predictors specifically in each subtype. To define
consistently ER and HER2 status in all samples avoiding the
heterogeneous assessment across data sets, we developed two
metagene-based predictors to define ER and HER2 status as
detailed in the Supplementary Section S3. The metagene-based
assessment was highly concordant with standard pathologic
assessment where this information was available (Supplemen-
tary Figs. S2-S5). Seven genes (CCDC170, ESR1, EVL, ABAT,
SLC39A6, GATA3, and SCUBE2) were included in the ER status
and 10 (ERBB2, PGAP3, STARD3, GRB7, PNMT, PSMD3,
GSDMB, RPL19, FGFR4, and CAP1) in the HER2 status predic-
tor, respectively.

Strategy for development and refinement of MBRPs

We first used the GENERIC collection of samples and a data-
splitapproach to identify robust clusters of genes with a reciprocal
correlation higher than 0.4. Their composition was subsequently
refined by removing genes showing a correlation below the
threshold in our series of FFPE-derived GEPs (ref. 18; Supple-
mentary Section S4). In this step, we used the correlation as a
simple metric for the assessment and removal at the very begin-
ning of probesets that have suboptimal hybridizations perfor-
mance on Affymetrix, when GEPs are derived starting from
fragmented FFPE-derived mRNA. After a Gene Ontology evalua-
tion of the genes within each cluster, three clusters were selected
based on their known relevant prognostic and/or predictive
biologic functions in specific molecular subtypes (immune sys-
tem, proliferation, and ER-related genes; refs. 1, 23, 24). These
clusters were used to develop subtype-specific MBRPs in the
PROGNOSTIC and TAM collection. Instead of the commonly
used approach of simply calculating the average expression of all
the cluster genes (unrefined metagene; refs. 20, 21, 25, 26), we
introduced a refinement step to select with a cross-validation
approach the optimal number of genes to maximize the prog-
nostic/predictive performance (refined metagenes or MBRPs;
Supplementary Section S5). Metagene scores were calculated as
the average of the expression of the selected genes without fitting
any weight.

Statistical analyses

Survival analysis. Univariable and multivariable Cox regression
were used to correlate metagenes or clinicopathologic variables
with outcome (survival R package). Concordance indices (c
indices), as computed by the coxph function, were used to
evaluate the refinement procedure efficacy. Results were also
plotted using the Kaplan-Meier method (rms R package) and
differences tested by log-rank test. Genomic predictors were
categorized by tertiles if not otherwise specified. Distant metas-
tasis-free survival (DMFS) was the main outcome endpoint. For
consistency, all data sets were right censored at 5 years because
longer term outcome was not available for the CHEMO col-
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lection and because late relapse seemed to be associated with
different molecular features (27).

Logistic regression. Logistic regression analysis was performed to
associate metagene scores by tertiles (high, intermediate, and low)
with pathologic complete response (pCR). OR, 95% confidential
interval (CI), and P values were derived from the fitted model and
plotted as forest plot.

Results

Overall workflow and patient population

The general workflow of the analysis used to derive breast
cancer MBRPs is illustrated in Fig. 1. A total of 3,847 GEPs of
invasive breast cancers were used in our study (Table 1). These
samples were grouped into four collections (GENERIC, PROG-
NOSTIC, TAM, and CHEMO) as detailed in the Materials and
Methods section. Clinicopathologic features for the PROGNOS-
TIC, TAM, and CHEMO series are summarized in Supplementary
Tables S1-S3. All samples were stratified in ER"HER2~, HER2 ",
and ER"HER2 ™~ subtypes.

Definition of MBRPs

Three robust gene clusters representative of biologic func-
tions with known associations with clinical outcomes (prolif-
eration, immune-related, and ER-related clusters), were iden-
tified in the GENERIC collection. Genes poorly performing in
FFPE-derived samples were removed (i.e., genes lacking the
expected correlation; Supplementary Section S4). These FFPE-
adapted clusters (thereafter called unrefined metagenes) were
used to generate subtype-specific MBRPs (thereafter also called
refined metagenes).

In ER"HER2 ™~ and HER2 " tumors, biomarkers associated with
immune functions have been reported as prognostic and predic-
tive (21, 24-26, 28-31). Therefore, starting from the unrefined
FFPE-adapted immune cluster we developed two subtype-specific
refined immune metagenes (Supplementary Section S5). In
untreated ER"HER2™ cases (n = 179, PROGNOSTIC collection),
25 genes were selected for the refined immune metagene (cross-
validated P value = 0.01, Table 2). In untreated HER2" tumors
(n =122, PROGNOSTIC collection), a 10-gene refined metagene
was developed (cross-validated P value = 9.5e-5, Table 2). Inter-
estingly, six of these selected genes were in common (CXCL13,
PRF1, IRF1, IKZF1, GZMB, and HLA-E). Notably, some of them
are associated with cytotoxic T cells. Using these genes, a consen-
sus T cell-related metagene (CTM) was defined. This consensus
metagene showed comparable performances to each subtype-
specific refined immune metagene (Supplementary Fig. S8A and
S8B), and it was also similarly prognostic in ER"HER2" (P =
0.024) and ER"HER2* (P = 0.0001) subtypes (Supplementary
Fig. S8C and S8D). Therefore, it was used for validation in the
CHEMO collection.

In untreated ERTHER2™ tumors (n = 508, PROGNOSTIC
collection), starting from the FFPE-adapted proliferation cluster,
we defined a refined proliferation metagene including 10 genes,
whose low expression was associated with favorable prognosis
(cross-validated P=1.91e-13, Table 2 and Supplementary Section
S5). We applied this proliferation metagene to ER"HER2 ~ tamox-
ifen-treated patients (n = 588, TAM collection) to validate its
prognostic performance in an independent patient cohort (P =
2.2e-6, Supplementary Fig. S9). Indeed, proliferation was not
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Workflow of the analysis. Schematic representation of data sets used, and the analyses performed to derive MBRPs (Metagene-Based Risk Predictors).

associated with any predictive value of endocrine treatment
benefit (32) resulting in a similar prognostic value in untreated
and endocrine-treated patients (33). In addition, we used the
proliferation metagene in the TAM cohort to identify those
patients at low risk of relapse even without tamoxifen (low
proliferation tertile). This group had a very low risk of relapse
(95.8% 5-year DMFS, 98.7% 5-year DMFS in node negative). To
develop a context-specific prognostic score to define patients at

low and high residual risk of relapse despite tamoxifen admin-
istration, we considered only patients with intermediate/high
proliferation (n = 395), excluding patients with low proliferation
who are less informative because they tend to do well anyway.
Starting with the FFPE-adapted, ER-related cluster, we defined a
refined ER-related metagene including 10 genes, whose high
expression was associated with an excellent prognosis (cross-
validated P = 1.10e-5, Table 2 and Supplementary Section S5).

Table 2. Refined prognostic metagenes and internally cross-validated performances

Data
collection

No. of
points

Number

Subtype Metagene of genes

Genes

5-years DMFS (%)
Intermediate
risk

Low risk High risk P

ER"HER2™ PROGNOSTIC 179 Immune 25

HER2" PROGNOSTIC 122 Immune 10

ERTHER2™ PROGNOSTIC 508 Proliferation 10

ER"HER2™
(intermediate/
high proliferation)?

TAM 394 ER-related 10

CXCL13, PLEK, IFNG, SLAMF7,

HLA-E, GIMAPS, IRF1, CXCL13,

NCAPG, BUBIB, PRCI, CCNB2,

ABAT, CAI2, MCCC2, SCUBE2,

7779 75.27 57.92 0.0089
IL2RB, PRF1, IRF1, PTPN22,

IKZF1, APOBEC3G, IL2RA,

ITGAL, CXCL9, GZMA,

GZMB, HLA-E, CCR5, CD8A,

SIRPG, CST7,

GNLY, CECRI, PNOC,

LCPI, HLA-DMB

86.56 81.34 51.26 9.55E-05
SELIL3, GZMB, IKZF1, PRF1,

FGL2, BIN2

91.47 88.34 63.61 5.25E-14
RADS5IAPI, ORC6, FANCI,

UBE2C, AURKA, KIF20A

93.99 85.11 75.24 9.12E-06
LRIGI, FAM63A, CCDCI76,

MYB, CACNAID, GATA3

NOTE: Gene selected in both ER"HER2™ and HER2™" cases are in bold.

20nly intermediate and high tertiles by proliferation metagene were included in this analysis.
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We also explored the association with outcome of the ER-related
metagene in ERTHER2™" patients, in which it was not significant
(P = 0.97; Supplementary Fig. S10).

Overall, we have defined in the ER"HER2™ group, a pure
prognostic factor (refined proliferation metagene) and a con-
text-specific predictive factor (refined ER-related metagene). By
combining these two metagenes through a median splitting, we
defined a low-risk (low proliferation and high ER-related meta-
genes), an intermediate-risk (high proliferation and high ER-
related or low proliferation and low ER-related metagenes), and
a high-risk (high proliferation and low ER-related metagenes)
group (Supplementary Fig. S11).

Prognostic and predictive value of MBRP in ER"HER2™ and
HER2" chemotherapy-treated patients

We aimed to evaluate without any further refinement the six-
gene CTM in the context of ER"HER2™ and HER2" patients
treated with neoadjuvant or adjuvant CT.

The association with pCR was assessed in patients treated with
neoadjuvant chemotherapy (anthracycline or anthracycline-tax-
ane-based regimen; n = 260, CHEMO collection). The tumors
with high, intermediate, and low expression of this CTM were
associated with different pCR rates [33.7%, 35.2%, and 11.6%,
respectively; high versus low OR = 3.87 (1.79-8.95), P = 0.0009;
intermediate versus low OR = 4.13 (1.93-9.52), P = 0.0004;
Fig. 2A]. The association between the CTM expression and pCR
was similarin ER"HER2 ~ and HER2 ™" subtypes, but it reached the
statistical significance only in ER"HER2 ", probably because of the
larger sample size. The same association pattern was found by
stratifying the analysis according with different data sets (Sup-
plementary Fig. S12).

The context-specific prognostic value of the CTM was assessed
in ER"HER2 ™ and HER2 " patients treated with either adjuvant or
neoadjuvant CT and having available outcome information (n =
205, CHEMO collection). The CTM was prognostic in the overall
group (P =0.001; Fig. 2B). However, when analyzed per subtype,
it resulted statistically significant in ER"HER2™ (P = 0.0001) but
not in HER2" (P = 0.5079) group (Fig. 2C and D and Supple-
mentary Table S8). The association was also not significant when
ER"HER2" and ER"HER2" subtypes were considered separately
(Supplementary Fig. S13). In the ER"THER2™ subtype, the 5-year
DMFS in the high and low tertile were 85.4% and 43.9%,
respectively. The association was similar when separately inves-
tigated in the two different data sets (Supplementary Figs. S14 and
S15 and Supplementary Table S8). Notably, in the ER"THER2™
subtype the CTM was significantly prognostic also in patients with
residual disease after neoadjuvant CT (P = 0.0055; Supplemen-
tary Fig. S16).

The predictive and prognostic performances of our CTM were
compared with two T-cell-related immune signatures [LCK; (25)
and Tfh (29)]. These immune markers showed a similar pattern of
association with pCR and long-term outcome but weaker and
sometime not statistically significant (Supplementary Figs. S17
and S18). In a multivariable analysis including the three immune
signatures, only our refined metagene remain significant (Sup-
plementary Table S9).

Finally, we correlated our CTM with the above-mentioned T-
cell-related metagenes [LCK (25) and Tth (29)] verifying its
strong association with T-cell related signature (Supplementary
Fig. S19); we also evaluated the association of the CTM with cell
types (Treg, macrophages) and immune signaling (co-inhibitory
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molecules expressed on T cell or antigen-presenting cells), which
are expected to be involved in immune tolerance and escape (34).
A significant positive correlation was found for all but not Treg
signatures, for which only a similar nonsignificant trend was
described (Supplementary Fig. S19).

Prognostic and predictive value of MBRPs in ER"HER2 ™
patients treated with chemotherapy and endocrine treatment

InER"HER2 ™ patients treated with neoadjuvant chemotherapy
(n = 357, CHEMO collection), we evaluated the likelihood of
achieving a pCR according to the three risk groups previously
defined based on the proliferation and ER-related metagenes. The
high-risk group (high-proliferation/low ER-related metagenes)
had the highest pCR rate (18.9%) compared with the low-risk
group [low proliferation/high ER-related metagenes, 4.4%; OR =
5.01 (1.76-17.99), P = 0.005; Fig. 2C]. This association was
driven by one of the two data sets included in the analysis
(Supplementary Fig. S20).

The prediction of risk of relapse according to the three risk
groups was evaluated in patients treated with neoadjuvant or
adjuvant chemotherapy followed by endocrine treatment (n =
350, CHEMO collection; Fig. 2D and Supplementary Table S10).
Compared with the low-risk group, the high-risk group showed
the poorest prognosis despite chemotherapy administration
[74.1% 5-year DMFS, HR = 3.73 (1.63-8.51), P = 0.0018]. This
association was robust and consistent across the two data sets
included in the analysis (Supplementary Fig. S21 and Supple-
mentary Table S10). Notably, the low-risk group demonstrated
an excellent prognosis even in tumors with residual disease after
neoadjuvant CT (96.1% 5-year DMFS), although the high-risk
group had poor prognosis (69.2% 5-year DMES, P = 0.01;
Supplementary Fig. $22).

Prediction in the overall HER2™ group

Because nowadays patients with HER2" tumors will receive
also trastuzumab as standard treatment, we evaluated the overall
MBRPs performance in the HER2 ™ group in which chemotherapy
and endocrine treatments are the actual standard of care. Risk
groups were identified separately in ER"HER2 ™ and ER"HER2 ™~
subtypes and then combined. In all HER2™ patients, the low-,
intermediate-, and high-risk groups had 91%, 83%, and 72% 5-
year DMFS, respectively (P = 1.5E-06; Supplementary Fig. S23). In
multivariate analysis, considering only patients treated with adju-
vant chemotherapy to allow adjusting for clinical variables (grade,
age, and nodal status; n = 371, CHEMO collection), high- and
intermediate-risk groups had a significantly higher risk of relapse
[HR=3.53 (1.57-7.92), P=0.002 and HR=2.54 (1.19-5.43), P
= 0.016, respectively; Table 3]. Similarly, high- and intermediate-
risk groups had a significantly higher risk of relapse in ER"HER2 ™
and ER"HER2 ™~ groups separately (Table 3).

Comparison between prediction performances of unrefined
and refined metagenes

In this study, instead of simply calculating an average expres-
sion value of all the genes belonging to FFPE-adapted clusters, we
introduced a cross-validated feature selection step to define
refined metagenes (Fig. 1 and Table 2). We assessed whether this
step leads to improved prognostic performances using an inde-
pendent validation cohort of chemotherapy-treated patients. The
refined metagenes assessed as continuous variable performed
always better (lower P value and higher c¢ indices) than the
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Subgroup Comparison OR Cl P
ER-or HER2* (n = 260) Intermediate vs. low CTM expression 413 (1.93-9.52) 0.0004 ——
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Figure 2.

Prognostic and predictive role of MBRPs in ER HER2 , HER2", and ER"HER2 ™ treated breast cancer. A, logistic regression analysis of the consensus T cell-related
metagene (CTM) expression and pCR after neoadjuvant chemotherapy. Metagene expression was categorized in low, intermediate, and high by tertiles. B, Kaplan-
Meier analysis for the association of the CTM expression by tertiles with 5-year DMFS in chemotherapy-treated patients for the subgroup of ER"HER2™ and HER2"
(left), ER HER2 ™ (middle), and HER2" (right). Survival differences were evaluated by log-rank test. C, logistic regression analysis of groups defined by combining
proliferation and ER-related metagenes with pCR after neoadjuvant chemotherapy in ER"HER2™ tumors (low-risk = low proliferation and high ER-related
metagenes; intermediate-risk = high proliferation and high ER-related or low proliferation and low ER-related metagenes; high-risk = high proliferation and low ER-
related metagenes). D, Kaplan-Meier analysis for the association of the three risk groups with 5-year DMFS in ER"HER2  patients treated with chemoendocrine
therapy. Survival differences were evaluated by log-rank test.

unrefined metagenes, confirming the usefulness of the feature decades (5), but these improvements came at the price of an
selection step (Table 4). increasing overtreatment. Such drawback is inherent in the one-
fits-all approach, where average instead of individual benefit is the
. . leading goal. In this context, biomarkers able to refine residual risk
Discussion :
after standard treatment would be extremely useful. For instance,
In early breast cancer, the add-on drug development strategy led  identifying those patients who do already well with a treatment
to aremarkable improvement of patient outcome overthelasttwo  will exclude them from overtreatment with additional therapies.
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Table 3. Multivariable Cox analysis in 371 HER2™ patients treated with adjuvant chemotherapy

All HER2™ ER"HER2™ ER'HER2"

Variables HR (95% CI) P HR (95% CI) P HR (95% CI) P
MBRP

High vs. low 3.53 (1.57-7.92) 0.0022 6.39 (1.37-29.86) 0.0183 4.71 (1.84-12.08) 0.0012

Interm vs. low 2.54 (119-5.43) 0.0165 8.25 (1.60-42.57) 0.0117 2.50 (1.05-5.98) 0.0391
Node pos (vs. neg) 2.38 (117-4.83) 0.0169 3.20 (0.90-1.42) 0.0730 2.71 (114-6.42) 0.0241
Grade IIl (vs. I 'and 1) 1.55 (0.90-2.68) 01172 >100 (0.00~inf) 0.9980 0.82 (0.42-1.60) 0.5622
Age >50 (vs. <50) 0.73 (0.44-1.22) 0.2301 1.34 (0.49-3.62) 0.5660 0.62 (0.34-1.14) 0.1245

Pointing in this direction, in the last decades several markers have
been developed to define which ER"HER2 ™ patients do not need
additional chemotherapy to adjuvant endocrine treatment
(9, 11, 35). However, this approach has not been applied exten-
sively for evaluating residual risk after standard chemotherapy.

In this study, we demonstrated that, using a metagene-based
risk prediction approach, it is possible to identify HER2 ™ patients
at different risk of recurrences despite receiving neoadjuvant or
adjuvant chemotherapy (ER"HER2 ") or chemoendocrine thera-
py (ER"HER2 ). High-risk patients despite systemic treatments
are the ideal candidates for clinical trials testing new combina-
tions of available drugs or investigational compounds, as they
represent an unmet clinical need. Clinical trials designed to enroll
these patients would have an increased chance of demonstrating a
clinical meaningful benefit reducing false-negative results (36), at
the same time requiring a smaller sample size, thus reducing costs
(37).

In the ER"HER2 ™ subtype, patients with high proliferation and
low ER-related genes were at the highest risk of distant relapse
despite being treated with chemoendocrine treatment and having
the higher likelihood of achieving a pCR after neoadjuvant
treatment. This apparent contradictory relationship has been
previously reported. For instance, higher Genomic Grade Index
and Recurrence Score were both associated with higher rates of
pCR after neoadjuvant chemotherapy, but also higher risk of
relapse despite chemoendocrine treatments (38-40). Our
approach could be an alternative way to refine the risk for this
population, in which the high-risk group represents the ideal
target for testing investigational new drugs or regimes. This
concept was applied in the design of the S1207 randomized
phase III clinical trial (https://clinicaltrials.gov/ct2/show/
NCT01674140?term=S1207&rank=1). In this trial, ERTHER2™
patient with 0 to 3 positive nodes were eligible to receive adjuvant
endocrine treatment + everolimus only if they had an Oncotype
DX score higher than 25, which corresponds to a higher residual
risk despite adjuvant chemoendocrine therapy.

Based on the previously reported relevance of immune bio-
markers as prognostic in untreated ER " HER2~ and HER2* groups

Table 4. Comparison of refined and unrefined metagenes in the CHEMO data
set

HR (95% Cl) P ¢ Index

Proliferation metagene (ER"HER2™, n = 350)

Refined 1.51 (1.07-2.14) 0.0206 0.63

Unrefined 1.62 (0.95-2.76) 0.0775 0.59
ER-related metagene (ER"HER2™, n = 350)

Refined 0.46 (0.31-0.70) 0.0003 0.67

Unrefined 0.54 (0.33-0.91) 0.0192 0.61
CTM (ER HER2™ or HER2", n = 205)

Refined 0.57 (0.41-0.77) 0.0004 0.65

Unrefined 0.57 (0.39-0.83) 0.0036 0.63

Abbreviation: CTM, consensus T cell-related metagene.

www.aacrjournals.org

(21, 24, 25, 28, 29), we developed a robust six-gene-based
immune metagene significantly prognostic in both groups. This
metagene was applied in patients treated with neoadjuvant or
adjuvant chemotherapy. In the ER"THER2™ subtype, higher tertile
of expression identified patients at lower risk of recurrences (85%
5-year DMFS) and higher rate of achieving a pCR, although lower
tertile of expression was associated with very high risk of distant
metastasis (43.9% 5-year DMFS) and lower pCR rate (11.6%). A
similar association has been described for tumor-infiltrating
lymphocytes (TIL) in triple negative patients treated with adjuvant
chemotherapy (41, 42). However, in these studies the lympho-
cyte-predominant breast cancer subgroup, which has the best
prognosis, correspond to only 10.5% (41) and 4.4% (42) of the
study population, whereas our data suggest that at least one third
of TN tumors had such good prognosis. Moreover, our immune
metagene identified one third of patients with a dismal prognosis,
resulting from both a higher baseline risk of recurrences and lack
of benefit from standard therapy. These patients deserve a priority
enrolment in trials testing investigational compounds. Our data
demonstrated a very heterogeneous prognosis by immune marker
value in ER"THER2™ patients treated with neoadjuvant chemo-
therapy but not achieving a pCR. These data could represent the
result of both a different baseline prognosis and long-term benefit
from chemotherapy, which did not result in a pCR.

A recently presented "proof of concept" study demonstrating
the clinical activity of pembrolizumab, an immune-checkpoint
inhibitor, in patients with advanced TN breast cancer (43). In line
with these results, our findings reinforce the rational for testing a
combination of immunomodulating agents and chemotherapy
in TN breast cancer, also considering the positive association
between our immune metagene and co-inhibitory immune mole-
cules, which are likely to be induced as negative regulatory feed-
backs to dampen an otherwise actively engaged immune system.

In the HER2 ™" group, we confirmed that higher immune meta-
gene score was associated with higher likelihood of achieving a
PCR, as previously reported (20, 24). However, the association
with the risk of recurrences was not significant. This could be a
false-negative result due to the smaller sample size but also a true
clinical observation. The endocrine treatment received by ER"
HER2™" patients could have generated unexpected interactions.
Moreover, similarly to our finding, in HER2" patients TILs were
not associated with a different risk of recurrence in two clinical
trials considering patients treated with chemotherapy only
(41, 44). This lack of association with outcome warrants further
confirmation and investigation.

The use of metagenes linked to defined biologic processes as
prognostic/predictive markers instead of mixture of genes related
with several functions has the advantage of easily interpreting the
meaning of the associations with the outcomes. The six genes of
our immune metagene (CXCL13, PRF1, IRF1, IKZF1, GZMB, and
HLA-E) are mainly associated with key adaptive immune cells
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functions. CXCL13-producing CD4 " follicular helper T cells were
associated with tertiary lymphoid structure that can contribute to
generate effective long-term antitumor immunity (29). Perforin
(PRF1) and granzyme B (GZMB) are two key cytolytic effectors,
which are upregulated upon cytotoxic T-cell activation (45). IRF1
is an activator of type I IFNs and IFN-inducible genes (46).
Overall, our data confirm that similar immune functions are
involved in tumor spread control (47-49) and in the cooperation
with chemotherapy activity. This link is not surprising and has
also been described by others (29). Indeed, some chemotherapies
(i.e., anthracyclines and oxaliplatin) are able to induce an immu-
nogenic cell death that can lead to an optimal activation of
adaptive immunity (50-52). However, our data suggest that such
immune system engagement is more likely to be effective if the
baseline immune microenvironment is already at least partially
activated.

The strategy adopted in this study to develop metagene
predictors includes some elements of interest and novelty. We
started from clusters of correlated genes with known biologic
and prognostic relevance (proliferation, ER-related genes, and
immune function), and then we optimized such metagenes by
removing noninformative probes. This feature selection step
(metagene refinement) resulted in a significant increase of the
prediction value in the CHEMO validation cohort compared
with unrefined metagenes. At the same time, reducing the
number of genes needed could facilitate the transfer of derived
signatures to non-microarray-based platforms, characterized
by a lower throughput, but higher accuracy. This overall strat-
egy represents a model that can be successfully applied in other
tumor contexts.

As potential limitations of our study, chemotherapy adminis-
tered in our CHEMO collection was not homogeneous and the
short available follow-up does not allow assessing for late relapse,
which could be relevant in the ER"HER2 ™~ group. A validation in
homogeneous cohorts of patients enrolled in clinical trials rep-
resent the ideal subsequent step (13). To improve its feasibility,
we developed our MBRPs in a way to be suitable for application in
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Supplementary Figures
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Supplementary Figure 1 - Evaluation of chip bias in the GSE17700 dataset. (A) U133 Plus 2.0-U133A probesets correlation using
our alternative CDF and fRMA normalization. (B) U133 Plus 2.0-U133A probesets correlation using the standard Affymetrix CDF and
MASS normalization
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Supplementary Figure 2 - Definition of a metagene-based ER status classifier. (A) ER metagene compared with IHC derived ER
status in the training subset from the GENERIC collection. (B) ER metagene distribution in the training subset and (C) in all the
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Supplementary Figure 3 - ER status and prognosis. Association with distant metastasis free survival (DMFS) for ER status as
originally reported (A) and as defined by our ER status predictor (B) in the PROGNOSTIC dataset. (C) Association with DMFS for ER
status as defined by our metagene in the TAM dataset.
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Supplementary Figure 4 - Definition of a metagene-based HER2 status classifier. (A) HER2 metagene compared with IHC/FISH
derived HER2 status in the training subset from the GENERIC collection. (B) HER2 metagene distribution in the training subset and
(C) in all the GENERIC collection (right).
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Supplementary Figure 5 - Follow-up of breast cancer subtypes as defined by our ER and HER2 metagenes in the PROGNOSTIC
collection
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Supplementary Figure 6 - Workflow for metagene identification and confirmation
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Supplementary Figure 7 - Outline of metagene refinement procedure to improve association with patients' outcome.
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Supplementary Figure 8 - Non cross-validated prognostic value for the CTM in ER-HER2- (A), HER2+ (B), ER-HER2+ (C) and
ER+HER2+ subtypes.
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Supplementary Figure 9 - Refined proliferation metagene in all ER+HER2- samples of the TAM collection (A) and separately for
N- (B) and N+ samples (C).
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Supplementary Figure 10 - Association between ER-related metagene by tertile and risk of distant relapse in the ER+HER2+
subtype of patients treated with endocrine treatment (TAM collection).
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Supplementary Figure 12 - Logistic regression analysis of CTM in association with treatment response in ER- or HER2+ samples
from Horak (left) or Desmedt (right) dataset.
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Supplementary Figure 13 - Association between CTM by tertile and risk of distant relapse in ER-HER2+ (A) and ER+HER2+ (B) in
patients treated with chemotherapy +/- endocrine treatment (CHEMO collection)
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Supplementary Figure 14 - CTM association with long-term outcome in ER- or HER2+ (left), ER-HER2- (center) or HER2+ (right)

samples from Petel dataset.
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Supplementary Figure 15 - CTM association with long-term outcome in ER- or HER2+ (A) and ER-HER2- samples (B) from

Desmedt dataset
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Supplementary Figure 16 - Association with long-term outcome according with our CTM in patients with residual disease. ER-
or HER2+ (A) or ER-HER2- cases (B) from Desmedt dataset.
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Supplementary Figure 17 - Prognostic role of immune scores (LCK and Tfh) in ER-HER2- and HER2+ breast cancer patients

treated with neoadjuvant chemotherapy. Univariate logistic regression analysis of LCK (A) and Tfh (B) immune scores expression
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Supplementary Figure 18 - Prognostic role of immune scores in ER-HER2- and HER2+ breast cancer patients treated with
systemic chemotherapy. (A, B and C) Kaplan-Meier analysis for the association of the LCK immune scores expression by tertiles
with 5-year DMFS in chemotherapy treated patients for the subgroup of ER-HER2- and HER2+ (A), ER-HER2- (B) and HER2+ (C). (D, E
and F) Kaplan-Meier analysis for the association of the Tfh immune scores expression by tertiles with 5-year DMFS in chemotherapy
treated patients for the subgroup of ER-HER2- and HER2+ (D), ER-HER2- (E) and HER2+ (F). Survival differences were evaluated by
log-rank test.
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Supplementary Figure 20 - Logistic regression analysis of combined proliferation and ER-related metagenes in association with
treatment response in ER+HER2- samples of the Hatzis dataset (left) or Horak dataset (right).
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Supplementary Figure 21 - Association with long-term outcome for the combined proliferation and ER-related metagenes in
ER+HER2- cases from Hatzis (left) and Petel (right) datasets
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Supplementary Figure 22 - Association with long-term outcome for the combined proliferation and ER-related metagenes in
the subgroup of ER+HER2- patients with residual disease (Hatzis dataset).
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Supplementary Figure 23 - MBRP performance in HER2- (ER- or ER+) treated patients. Risk groups were defined by combining
corresponding low, intermediate and high risk groups in ER-HER2- and ER+HER2-patients. Kaplan-Meier analysis for the association
between these three risk groups with 5-year DMFS in patients treated with chemotherapy (ER-HER2) or chemo-endocrine
treatment (ER+HER2-). Survival differences were evaluated by log-rank test.
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1. Data collection and clinico-pathological features of employed case series
All downloaded datasets were checked to verify that only profiles from primary invasive breast cancer
receiving no pre-surgery treatment were included. Samples not satisfying such criteria, cell line and normal
tissue profiles were removed. Data were also checked for the presence of replicated CEL files uploaded
with different GSM ID and redundancy was removed.
Datasets were grouped in four main collections (GENERIC, PROGNOSTIC, TAM and CHEMO) according
with available information and treatment received by patients. All relevant clinico-pathological features

were equalized and summarized in Supplementary Tables 1-3 for the last three collections.

2. Data processing using alternative CDFs

CEL files were imported using the affy Bioconductor package [1] and normalized using fRMA [2] with an
alternative CDF as previously described [3]. Such method was specifically optimized to process GEPs from
FFPE samples, but we have highlighted an improvement also in the downstream analysis of GEPs obtained
from frozen tissues. Moreover, since both the GeneChip Human Genome U133 Plus 2.0 and U133A were
used in this study, we defined here a new alternative CDF (named RefSeq_common) using only probes
unambiguously mapping a RefSeq transcript and common to the two chip versions. A total of 11782
probesets (one probeset per gene) was generated.

To validate the consistency of signals from the same probesets measured with the two chip versions (i.e.
U133A and U133 Plus 2.0), a dataset (GSE17700) containing 16 breast cancer samples profiled by two
different labs and, in each lab, using both U133A and Plus 2.0 was evaluated. Probeset correlation across
the samples was very high, with a median value of 0.901 (Supplementary Figure 1). Notably, the agreement
between U133A and Plus 2.0 data was much higher using our normalization approach than when using
MASS5 normalization together with the standard CDF (median correlation = 0.656) (Supplementary Figure
1).

3. Development of metagene-based predictors of ER and HER2 status
For the training of an ER status predictor, we selected two datasets from the GENERIC collection
(GSE5460 and GSE19615, n=169) having an ER status accurately and homogeneously defined by IHC. Area
under ROC curve (AUC) was computed for all genes and, starting from the best performing ones, we
increased the number of genes to be included in metagene computation until the best AUC was obtained.
Best performance was obtained using the top 7 genes (C60rf97, ESR1, EVL, ABAT, SLC39A6, GATA3,
SCUBE?2) giving an AUC=0.993. A threshold was defined looking at the bimodal distribution of the metagene

as well as looking at the agreement with ER status defined by IHC. Using a cut-off of 7.5, a Cohen’s Kappa





value of 0.925 was obtained. The validity of the threshold was confirmed in the whole GENERIC collection

(n=1,186) (Supplementary Figure 2).

To further validate the metagene as a sufficiently accurate predictor of ER status, it was applied to both
the PROGNOSTIC and the TAM datasets. In the PROGNOSTIC dataset an AUC=0.927 and Cohen’s Kappa of
0.755 were obtained, that can be judged as high considering that the reported ER status was obtained with
either IHC or radio-ligand assay methods using different or not specified thresholds. The prognostic value of
ER status defined by our metagene was compared with that of the available ER status using Kaplan-Meier
curves and superimposable results were obtained (Supplementary Figure 3). In the TAM dataset, where all
but 5 samples were labeled as ER positive, 43 samples were classified as negative according to our
metagene. All the 5 samples originally labeled as ER negative, were classified as negative by our metagene,
and the 43 patients (ER-negative according to our metagene classification) had a significantly worst
outcome compared with all the others (Supplementary Figure 3), suggesting that at least most of them

were actually ER negative and did not therefore benefit from hormone treatment.

An analogous approach was applied to identify HER2 positive tumors. Three datasets from the GENERIC
collection (GSE5460, GSE16391, and GSE21653, n=417) were selected to develop the HER2 status predictor.
In such datasets, HER2-positive samples were defined as those with IHC score=3+ or FISH positive. An
AUC=0.933 was obtained when using the top 10 genes associated with HER2 status to derive a metagene
(ERBB2, PGAP3, STARD3, GRB7, PNMT, PSMD3, GSDMB, RPL19, FGFR4, CAP1), eight of which were in the
amplicon region. Looking at the metagene distribution and at the agreement with the available HER2

status, a threshold at 8.35 was defined giving a Cohen’s Kappa=0.738 (Supplementary Figure 4).

Finally, by combining the ER and HER2 status prediction in the PROGNOSTIC collection we observed for
the three groups (ER-HER2-, HER2+ and ER+HER2-) the expected pattern of relapse during the follow-up,
that is an early relapse, mostly within 5 years, for ER-HER2- and HER2+ tumors and a quite constant risk of
metastasis until 10 years in ER+HER2- cases (Supplementary Figure 5).

The defined cut-offs for ER and HER2 predictors were applied to all public datasets employed in our

analyses.

4. I|dentification of clusters of consistently correlated genes
The GENERIC collection was used to identify clusters of stably correlated genes as outlined in

Supplementary Figure 6.





The collection was randomly split in a discovery and confirmation subset of 593 samples each. In the
discovery subset, genes were subjected to hierarchical clustering and, by cutting the dendrogram at a
correlation value of 0.4, 45 clusters each containing at least 25 genes were derived. Each cluster was then
re-clustered in the confirmation subset and, genes herein correlated less than 0.4, were removed. Clusters
that globally retained at least 20 of the original genes were maintained. This approach defined robust
clusters of correlated genes because the genes selected as belonging to each cluster were independently
confirmed in two split sets. To allow validation of our findings also in FFPE-derived case series, a re-
clustering was also performed in a case series of 44 FFPE samples derived in our lab (GSE38554). As before,
genes correlating less than 0.4 were removed and clusters still containing at least 10 genes were retained.
As expected, some of the probesets which were not correlated in FFPE derived GEPs had spurious level of
correlations (also negative), that can be only explained by the technical failure of hybridization of the
corresponding probes using fragmented FFPE-derived mRNA (data not shown). However, the biological
function captured by the cluster will be still accurately measured by the selected well performing
probesets. At the end of the two selection steps, 40 of the 45 clusters were confirmed. Guided by Gene
Ontology analysis, we picked up among them a T-cell related immune metagene, a metagene related with

the proliferation process and a metagene containing ESR1 and ESR1-related genes.

5. Refinement of selected clusters and metagene computation
Despite all genes belonging to the identified clusters were correlated each other, by looking at univariable
Cox analysis, we noted that they were not all equally associated with outcome. Therefore, it seemed
reasonable that a selection of best performing genes could improve the metagene performance.
A method was developed to improve the metagene association with outcome, according with the scheme

reported in Supplementary Figure 7.

In a 10-fold cross-validation setting, univariable Cox regression analysis was performed for all genes
belonging to the cluster being refined in 9/10 of samples. The number of genes to include in the
computation of the metagene ranged from all to 10 genes and, for each value, the three tertiles having low,
intermediate and high expression of the metagene were defined and used to assign the class in the
remaining 1/10. After completing the cross validation, the 5-year DMFS for the cross-validated groups was
estimated and log-rank test p-value was computed. The cross-validation was then repeated 100 times
obtaining average survival and p-values, together with their standard deviations. This way it was possible to
identify the best number of genes with lower univariable Cox p-values to be included in the refined
metagene.

In the PROGNOSTIC collection, 179 ER-HER2- samples were identified by applying our genomic predictors

of ER and HER2 status. In this subset the refinement procedure was applied to the immune cluster varying
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the number of genes from all in the cluster (n=92) to 10. Cross-validated refinement suggested to use the
top 25 genes able to predict an average 5-year distant metastasis-free survival (DMFS) of 78, 75 and 58%
for patients in the high, intermediate or low tertile of metagene levels, respectively (p<le-2)

(Supplementary Table 4).

The same cluster was refined in the subgroup of 122 HER2+ tumors from the PROGNOSTIC collection
(Supplementary Table 5). This time, best performance was obtained using 10 genes with an average 5-year
DMFS of 87, 81 and 51% for patients in the high, intermediate or low tertile of metagene levels,

respectively (p<le-4).

Immune genes selected in the two subtypes were 25 in ER-HER2- and 10 in HER2+ with 6 of them in
common (CXCL13, PRF1, IRF1, IKZF1, GZMB, HLA-E). The difference could be a simple consequence of the
fact that refinement was carried out in independent set of samples or a sign of partially different underlying
biological mechanisms in the two subtypes. Under the first hypothesis, the six genes in common could be
even more robust because they were identified as being the best in two independent sets. Moreover, these
two subtypes usually constitute a minority of the samples in most studies (10-20% each), therefore such
consensus T cell-related metagene (CTM) could facilitate a pooled analysis for ER-HER2- and HER2+
samples. As a first indication, we tested whether the common metagene worked well in the two subtypes
in the PROGNOSTIC collection itself, although we know that such result could be someway overfitted
(Supplementary Figure 8A-B). We also tested the CTM after stratifying HER2+ samples by ER status

(Supplementary Figure 8C-D)

The proliferation cluster was refined in the subgroup of 508 ER+HER2- tumors identified in the
PROGNOSTIC collection. By gradually reducing the number of genes included in the metagene, we obtained
the best performance using the top 10 genes (NCAPG, BUB1B, PRC1, CCNB2, RAD51AP1, ORC6, FANCI,
UBE2C, AURKA, KIF20A) associated with an average 5-year DMFS of 64, 88 and 91% for patients in the high,

intermediate or low tertile of metagene levels, respectively (p<le-13) (Supplementary Table 6).

The association with prognosis for the refined proliferation metagene was also validated in the cohort of
patients receiving hormone treatment (TAM dataset), both in the same contest of lymph node negative
patients and out of context in the lymph node positive group, confirming its independence from lymph

node status (Supplementary Figure 9).

Looking at the Kaplan-Meier curves in Supplementary Figure 9 above, it can be noted that the group of

patients with low proliferation tumors has a very good outcome, consequently trying to predict





sensitiveness to hormone therapy including such subgroup is disadvantageous from a statistical point of
view due to the very low number of events that limit the possibility to identify significant predictive factors.
In keeping with this consideration, our approach was to exclude low proliferation ER+HER2- tumors (lower
tertile of the proliferation metagene) and to focus on the remaining 394 samples of the TAM collection with
intermediate or high proliferation. Here the refinement procedure was applied to the ER-related cluster,
and we chose to use the top 10 genes (ABAT, CA12, MCCC2, SCUBE2, LRIG1, FAMG63A, C14orf45, MYB,
CACNA1D, GATA3). The generated metagene was able to stratify patients based on average 5-year DMFS.
Ninety-four, 85, and 75% of patients were disease free for more than 5 years in the high, intermediate and

low tertile, respectively (p<le-5) (Supplementary Table 7).

With exploratory purposes, we tested whether the refined ER-related metagene provide any
prognostic/predictive information in the ER+HER2+ subgroup. As reported in Supplementary Figure 10, no

significant association was found.

It is reasonable to hypothesize that in patients with ER+HER2- breast cancers receiving adjuvant hormone
treatment, the outcome could be consequence of a combination of the tumor aggressiveness and its ability
to respond/resist to the targeted treatment. This means that a combined evaluation of the prognostic
proliferation metagene and the predictive ER-related metagene might better stratify the patients.

Following our strategy of deriving simple and weight-independent predictors, we searched for reasonable
cut-offs in the distribution of the two metagenes. By plotting the levels of the two metagenes and
highlighting the events within 5 years, a median cut point seemed to be appropriate. The group with low
proliferation and high ER-related metagenes had the best prognosis. On the opposite, those having high
proliferation and low ER-related metagene had the worst prognosis, while the other two groups had an

intermediate risk (Supplementary Figure 11).

6. Immune metagene prognostic and predictive value in chemotherapy receiving ER-HER2-
and HER2+ subtypes

Association with treatment response of our CTM in ER- or HER2+ cases receiving neoadjuvant CT was
evaluated in two datasets of the CHEMO collection: i) the Horak dataset (GSE41998), where patients
received neoadjuvant doxorubicin/cyclophosphamide, followed by 1:1 randomization to ixabepilone or
paclitaxel; ii) the Desmedt dataset (GSE16446) where patients only received a single agent treatment
(epirubicin). A total of 146 and 114 ER- or HER2+ samples were identified, respectively. High, intermediate
and low metagene expression was defined separately in each dataset according with tertiles. In both
datasets comparable odds ratios were obtained, with 33% of patients with higher expression of the CTM

having a significantly higher rate of pCR (Supplementary Figure 12).





The CTM was not evaluated in ER-HER2- and HER2+ samples of the two Hatzis datasets (GSE25055 and
GSE25065) because most of these samples were fine needle aspiration (FNA) that are enriched in tumor
cells while stromal cells are poorly and variably represented, distorting the evaluation of immune specific
genes.

We investigated the association with long-term outcome of our CTM in HER2+ tumors (CHEMO collection)

after stratifying by ER status (Supplementary Figure 13)

Association of the CTM with patients’ outcome was separately evaluated in: i) Petel dataset (E-MTAB-365)
where patients received not homogeneous adjuvant CT and ii) Desmedt dataset (GSE16446) where patients
only received a single agent treatment (epirubicin). As before, high, intermediate and low metagene
expression was defined in each dataset according with tertiles.

In Petel dataset only a trend was found in ER- or HER2+ group but this was caused by a lack of association
with outcome in HER2+ subgroups whilst the association was strong and significant in ER-HER2- subgroup

(Supplementary Figure 14).

Similar results were obtained in the Desmedt dataset. The number of HER2+ samples was too small to
plot meaningful Kaplan-Meier curves but, as can be noted in Supplementary Figure 15, the performance of

the CTM in the combined group was poorer than in ER-HER2- group only.

Patients achieving a pCR are known to have an excellent outcome, in particular in ER-HER2- and HER2+
tumors. However the double role (prognostic and predictive) of the CTM allows a significant stratification of
the long-term risk also in patients with a residual disease after neoadjuvant treatment (Supplementary

Figure 16). As reported previously, the prognostic value seems to be stronger in ER-HER2- tumors.

Besides Kaplan-Meier analysis, the immune metagene was evaluated in the different datasets and in the
different subgroups by univariable Cox regression analysis that traced the conclusions above

(Supplementary Table 8).

Performances of our CTM (Figure 2A-B in the main manuscript) were compared in the same set of data
with performances of two previously published immune signatures: LCK [4] and Tfh [5] metagenes.
Association with pCR is reported in Supplementary Figure 17 while association with long-term outcome is

reported in Supplementary Figure 18.





For a direct comparison of the prognostic performances of our CTM with LCK and Tfh, we performed a
multivariable analysis including all the three metagenes. Only the immune metagene remained significant,
suggesting that even if the biomarkers provide similar prognostic information (all were significant in
univariable analysis) it was outperforming the other two immune-related biomarkers (Supplementary Table

9).

The genes included in the CTM (i.e. GZMB, PRF1, IKZF1 and CXCL13) suggested that the signal provided by
this immune marker is strongly associated with cytotoxic T cells. To confirm this association, we assessed
its correlation with two different T cell related metagenes (Tfh and LCK) in ER- or HER2+ samples from the
CHEMO cohort. We also evaluated the association of our CTM with cell types (Treg, Macrophages) and
regulatory signaling (co-inhibitory molecules expressed on T cell or antigen-presenting cells) which are
expected to be involved in immune tolerance and escape. For this aim, we derived the corresponding
specific gene signatures from Rooney et al [6] (Supplementary Figure 19). A positive correlation of different
degree was found for all the immune markers with our CTM. The strongest correlation was found with the
two T cell metagens, confirming that this signature is likely to capture engaged and activated T cells. The
positive and significant association with co-inhibitory immune molecules suggests that the immune system
activation captured by our metagene is associated with inhibitory and dampening signals engaged as
negative regulatory feedbacks. This observation was similarly reported by many other authors (including

Rooney et al).

7. Predictive and prognostic value of combined proliferation and ER-related metagenes in
chemo-endocrine receiving ER+HER2- patients
In ER+HER2- subtype, high, intermediate and low risk groups where defined as described in the main
manuscript and section 5 of this supplementary information. Association with response to treatment,
looking at pCR as surrogate, was evaluated by logistic regression analysis in the Hatzis (n=250) and Horak
(n=107) datasets. High-risk group was significantly associated with higher pCR rate in Hatzis dataset but not

in Horak dataset (Supplementary Figure 20).

Although high-risk group seems to benefit the most from CT, it still showed the worst outcome in the
Hatzis dataset as well as in the Petel dataset. Only ER+HER2- patients that actually received endocrine

therapy were included in this analysis (Supplementary Figure 21).

As shown in Supplementary Figure 22, patients with a residual disease after neoadjuvant CT can be
significantly stratified by our risk groups defined by combining expression levels of the proliferation end ER-

related metagene.





Besides Kaplan-Meier analysis, the combined proliferation and ER-related metagenes were evaluated in
the different datasets by univariable Cox regression analysis that traced the conclusions above

(Supplementary Table 10).

8. Prediction in HER2- treated patients

Risk groups identified separately in ER-HER2- and ER+HER2- subtypes were then combined. Overall, the
low, intermediate and high-risk groups had 91%, 83% and 72% 5 year DMFS, respectively (p=1.5 E-06,
Supplementary Figure 23).
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Supplementary Tables

Supplementary Table 1 - Clinico-pathological features for samples in the PROGNOSTIC collection

Dataset
GSE2034 GSE7390 GSE11121 GSE5327 GSE2990
Wang Transbig Mainz Minn Sotiriou
Total samples 286 198 200 58 84
Age
Range (years) 26-83 24 - 60 25-90 - 34-73
Median (years) 52 46 60 - 57
<50 129 142 51 0 29
>50 157 56 149 0 55
Unknown 0 0 0 58 0
Size
Range (cm) - 0.6-5 0.1-6 - 0-6
Median (cm) - 2 2 - 2
<2 146 102 112 0 48
>2 140 96 88 0 36
Unknown 0 0 0 58 0
Grade
G1 7 30 29 0 21
G2 42 83 136 0 31
G3 148 83 35 0 19
Unknown 0 2 0 58 13
Limph node status
Pos 0 0 0 0 0
Neg 286 198 200 58 84
Unknown 0 0 0 0 0
Histotype
CDI 0 158 0 0 0
CDI+CLI 0 11 0 0 0
CLl 0 13 0 0 0
Other 0 12 0 0 0
Unknown 286 4 200 58 84
ER status
Pos 209 134 162 0 61
Neg 77 64 38 58 15
Unknown 0 0 0 0 5
HER2 status*
Pos 51 27 24 10 13
Neg 235 171 176 48 71
Unknown 0 0 0 0 0
Follow-up time**
Range (months) 2-171 4-299 1-240 7-156 2-174
Median (months) 86 144 91 87 96
Systemic treatment
Chemotherapy 0 0 0 0 0
Endocrine terapy 0 0 0 0 0

* Based on genomic HER2 status predictor
** Time to Distant Metastasis





Supplementary Table 2 - Clinico-pathological features for samples in the TAM collection

GSE12093
Zhang
Total samples 136
Age
Range (years) -
Median (years) -
<50 0
>50 0
Unknown 136
Size
Range (cm) -
Median (cm)
<2 0
>2 0
Unknown 136
Grade
G1 0
G2 0
G3 0
Unknown 136
Limph node status
Pos 0
Neg 0
Unknown 136
Histotype
CDI 0
CDI+CLI 0
CL 0
Other 0
Unknown 136
ER status
Pos 136
Neg 0
Unknown 0
HER2 status*
Pos 10
Neg 126
Unknown
Follow-up time**
Range (months) 8-193
Median (months) 85
Systemic treatment
Chemotherapy 0
Tamoxifen (5 years) 136

* Based on genomic HER2 status predictor
** Time to Distant Metastasis

GSE17705
Symmans

195

o

195

o O o

195

80
110

o O oo

195

195

186

6-195
113

195

Dataset
GSE9195

Loi
77

42 -82
65

71

1.1-6
2.1
34
43

14
20
24
19

36
41

O O oo

71

15-135
99

77

GSE6532
Loi (PLUS2)

87

43 - 86
82

62

11-75
43
44

17
37
16
17

81

6-202
137

87

GSE6532
Loi (U133A)
190

40-88
65
16

165

0-8.2
2.4
67
114

33
94
31
32

85
87

O O oo

190

185

22
168

0-153
62

190
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Supplementary Table 3 - Clinico-pathological features for samples in the CHEMO collection

Dataset
E-MTAB-365 GSE16446 GSE25055 GSE25065 GSE41998
Petel Desmedt Hazis discovery  Hazis validation Horak
Patients 243 120 310 198 279
Age
Range (years) 29-71 - 26-75 24-72 25-79
Median (years) 50 - 49 48 48
<50 123 0 168 109 166
>50 120 0 142 89 113
Unknown 0 120 0 0 0
Size
Range (cm) - - - - -
Median (cm) - - - - -
<2 0 0 0 0 0
>2 0 0 0 0 0
Unknown 243 120 310 198 279
Grade
G1 25 2 19 13 -
G2 92 20 117 64 -
G3 122 92 151 107 -
Unknown 4 6 23 14 279
Limph node status
Pos 202 65 223 128 0
Neg 38 55 87 70 0
Unknown 3 0 0 0 279
Histotype
CDI 209 0 0 0 0
CDI+CLI 0 0 0 0 0
CLI 17 0 0 0 0
Other 4 0 0 0 0
Unknown 13 120 310 198 279
ER status
Pos 159 3 167 107 121
Neg 83 117 143 91 158
Unknown 1 0 0 0 0
HER2 status
Pos 33 28 9 14 26
Neg 177 92 301 184 253
Unknown 33 0 0 0 0
Pathologic Response
pCR - 16 57 42 69
RD - 98 249 140 184
Unknown - 6 3 16 26
Residual Cancer Burden 1
RCB-0/I - - 86 32 86
RCB-II/1lI - - 215 84 167
Unknown - - 9 82 26
Follow-up time*
Range (months) 0-193 F 2-71 0-89 v 2-88 -
Median (months) 76 33 29 38 -
Systemic treatment
Neoadjuvant chemotherapy
Epirubicin monotherapy 0 120 0 0 0
AC - Ixabepilone 0 0 0 0 138
AC - Paclitaxel 0 0 0 0 127
AC 0 0 0 0 14
Taxane-anthracycline regimen 0 0 310 183 0
Adjuvant chemotherapy
Taxane-anthracycline regimen 47 0 0 15 0
Anthracycline regimen 155 0 0 0 0
HER2-targeted agents 2 0 0 0 0
Not specified chemotherapy+ 41 0 0 0 0
Adjuvant endocrine therapy
Endocrine therapyt 128 0 167 107 0

* Time to Distant Metastasis

¥ These grup included adjuvant chemotherapy regimens not completely specified or hetherogenous

1 Endocrine treatment were not specified

AC (doxorubicin and cyclophosphamide ) followed by ixabepilone (40 mg/m2) AC (doxorubicin and cyclophosphamide ) followed by weekly paclitaxel
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Supplementary Table 4 - Output of immune cluster refinement in ER-HER2- samples. Five years DMFS for high, intermediate
and low expression groups and log-rank test p-values (average and standard deviation of 100 10-fold cross-validations) are
reported as a function of the number of genes.

average 5-years DMFS (%) after 100 cross-validations standard deviation of 5-years DMFS (%) after 100 cross-validations ~ standard
Number average deviation of
of genes Low exp Intermediate exp High exp -log10(P) Low exp Intermediate exp High exp -log10(P)
92 57.23 78.50 75.48 2.29 0.84 1.10 0.48 0.28
80 56.67 78.43 76.08 2.46 1.02 1.59 0.68 0.38
70 57.06 77.89 76.11 2.31 0.94 1.33 0.71 0.34
60 57.72 76.87 76.28 2.08 1.35 1.76 0.71 0.43
50 58.94 75.18 76.60 1.74 1.35 1.66 0.83 0.35
45 59.81 74.03 76.94 1.57 1.50 1.83 0.84 0.33
40 59.93 73.61 77.26 1.58 1.50 2.00 1.00 0.31
35 58.92 74.56 77.36 1.79 1.45 1.90 0.96 0.32
30 58.23 74.89 77.65 1.95 1.43 1.84 0.81 0.33
25 57.92 75.27 77.79 2.05 1.59 1.87 0.83 0.36
20 59.13 74.15 77.81 1.79 1.86 1.95 0.92 0.40
15 60.09 73.16 77.83 1.60 1.73 2.01 0.99 0.35
10 59.98 72.74 78.24 1.65 1.77 1.98 0.95 0.33

Supplementary Table 5 - Output of immune cluster refinement in HER2+ samples. Five years DMFS for high, intermediate and
low expression groups and log-rank test p-values (average and standard deviation of 100 10-fold cross-validations) are reported as
a function of the number of genes.

Number 2Verage 5-years DMFS (%) after 100 cross-validations average standard deviation of 5-years DMFS (%) after 100 cross-validations g :\t,ia:t?::,dof
of genes Low exp Intermediate exp High exp -log10(P) Low exp Intermediate exp High exp -log10(P)
92 52.61 80.47 85.55 3.33 1.04 1.26 0.43 0.27
80 51.14 81.91 85.57 3.74 1.21 1.05 0.46 0.30
70 51.90 81.35 85.53 3.55 1.55 1.39 0.41 0.40
60 52.35 81.11 85.45 3.43 1.42 1.28 0.37 0.34
50 52.47 81.11 85.38 3.40 1.41 1.29 0.42 0.34
45 52.49 81.10 85.38 3.41 1.63 1.61 0.38 0.42
40 52.41 81.15 85.30 3.42 1.62 1.60 0.41 0.41
35 52.68 80.89 85.24 3.36 2.00 1.98 0.38 0.50
30 52.67 80.51 85.25 3.35 1.83 1.99 0.41 0.49
25 54.08 79.25 85.20 3.02 1.94 2.16 0.57 0.48
20 54.55 79.15 85.07 2.92 1.83 2.12 0.73 0.46
15 53.88 79.78 85.22 3.10 1.93 1.76 0.88 0.43
10 51.26 81.34 86.56 4.02 1.87 2.05 1.30 0.57
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Supplementary Table 6 - Output of proliferation cluster refinement in 508 ER+HER2- samples. Five-years DMFS for high,
intermediate and low expression groups and log-rank test p-values (average and standard deviation of 100 10-fold cross-
validations) are reported as a function of the number of genes.

average 5-years DMFS (%) after 100 cross-validations standard deviation of 5-years DMFS (%) after 100 cross-validations ~ standard
Number average L
£ log10(P) deviation of
otgenes Low exp Intermediate exp High exp -log Low exp Intermediate exp High exp -log10(P)
102 93.30 83.00 66.83 10.03 0.25 0.47 0.37 0.35
90 93.79 82.25 67.11 9.98 0.32 0.37 0.31 0.28
80 94.09 82.52 66.52 10.67 0.39 0.50 0.38 0.45
70 93.90 83.95 65.33 11.84 0.51 0.69 0.48 0.51
60 93.49 85.03 64.73 12.37 0.45 0.54 0.40 0.45
50 93.04 85.30 64.91 12.01 0.54 0.70 0.46 0.57
45 93.14 85.54 64.58 12.39 0.51 0.72 0.49 0.58
40 92.51 86.36 64.44 12.41 0.40 0.55 0.43 0.50
35 92.21 86.60 64.44 12.33 0.37 0.53 0.43 0.52
30 91.87 87.09 64.32 12.40 0.33 0.61 0.49 0.59
25 91.70 87.58 64.08 12.70 0.43 0.68 0.54 0.67
20 91.50 87.78 64.14 12.60 0.45 0.70 0.53 0.66
15 91.55 87.89 64.04 12.76 0.45 0.68 0.64 0.78
10 91.47 88.34 63.61 13.28 0.53 0.81 0.60 0.75

Supplementary Table 7 - Output of ER-related cluster refinement in 394 high proliferation ER+HER2- samples. Five-years DMFS
for high, intermediate and low expression groups and log-rank test p-values (average and standard deviation of 100 10-fold cross-
validations) are reported as a function of the number of genes.

average 5-years DMFS (%) after 100 cross-validations standard deviation of 5-years DMFS (%) after 100 cross-validations ~ standard
Number average L.
£ senes -log10(P) deviation of
ore Low exp Intermediate exp High exp & Low exp Intermediate exp High exp -log10(P)
43 75.01 85.32 93.99 4.87 0.57 0.72 0.48 0.38
35 75.78 83.47 95.07 5.03 0.76 0.92 0.50 0.37
30 76.74 83.25 94.40 4.37 0.76 1.18 0.80 0.43
25 77.07 83.75 93.58 3.89 0.85 1.15 0.92 0.49
20 77.19 83.91 93.31 3.78 1.10 1.38 1.00 0.58
15 76.43 84.30 93.63 4.26 1.22 1.50 1.00 0.64
10 75.24 85.11 93.99 5.04 1.14 1.29 0.82 0.73

Supplementary Table 8 - Univariable Cox regression analysis for the CTM in the combined dataset or in each dataset for ER- or
HER2+ cases or separately for ER-HER2- and HER2+ subgroups.

HR Cl.low Cl.up P
ER- or HER2+
All (n=205) 0.57 0.41 0.77 0.00036
Desmedt (n=107) 0.54 0.33 0.87 0.01100
Petel (n=98) 0.61 0.40 0.92 0.01824
ER-HER2-
All (n=122) 0.44 0.30 0.65 0.00003
Desmedt (n=80) 0.47 0.28 0.78 0.00371
Petel (n=42) 0.39 0.21 0.74 0.00411
HER2+
All (n=83) 0.74 0.42 1.29 0.28321
Desmedt (n=27) 1.08 0.26 4.44 0.91367
Petel (n=56) 0.70 0.37 1.30 0.25341
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Supplementary Table 9 — Univariable and multivariable Cox regression analysis in 205 ER-HER2- and HER2+ samples from the
CHEMO collection (all biomarkers were used as continous variables)

Univariable Cox regression

ER- or HER2+

LCK
Tfh

Multivariable Cox regression

ER- or HER2+

CT™M
LCK
Tfh

HR

0.63

0.53

HR

0.32

1.40
1.45

Cl (95%)
(0.46-0.87)
(0.35-0.79)

C1 (95%)
(0.12-0.90)

(0.65-3.01)
(0.43-4.83)

P

0.0054
0.0020

0.03110
0.39590
0.54700

Supplementary Table 10 - Univariable Cox regression analysis for the combined proliferation and ER-related metagenes in
ER+HER2- cases from the combined dataset or from each dataset

ALL (n=350)
High vs Low risk
Interm vs Low risk
Hatzis (n=242)
High vs Low risk
Interm vs Low risk
Petel (n=108)
High vs Low risk
Interm vs Low risk

HR

3.73
2.20

4.72
2.99

12.52

6.54

Cl.low

1.63
0.97

1.33
0.85

1.60
0.83

Cl.up P

8.51 0.0018
5.01 0.0594
16.75 0.0163
10.48 0.0877
97.87 0.0160
51.65 0.0748
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